
Kubernetes-native apps with Knative

Easy-to-test, modern,

Chris Suszyński

 @ksuszynski /in/krzysztof-suszynski

Red Hat Summit Connect 2022 Warsaw

https://twitter.com/ksuszynski
https://www.linkedin.com/in/krzysztof-suszynski

About me

2

Chris Suszynski
● Senior Software Engineer at Red Hat
● Work on OpenShift Serverless
● Golang lover
● Interested in Kubernetes & WASI
● On a Java & Puppet rehab
● 16y+ of dev experience
● breathe Open Source
● happy father & husband

Agenda

1. A bit of history
2. Apps of modern era
3. Serverless
4. Event Mesh
5. Kubernetes-native apps using Knative
6. Q&A

A bit of history

4

Pro
gramable ROMs

Punch card
s

Hard
ware only

Unix / C

Virt
ualizatio

n

Modern
 la

nguages /
 Linux

Hybrid
 / C

loud-n
ativ

e

Containers
/ C

louds

Unfortunately

5

Our apps design is
still in the past.

Examples of legacy design

6

● 3-tier monolithic architecture
● Transactional everything

@Transactional

Monolith

7

MyBank

Inside monolith

8

Dividing monolith

9

Enter microservices

10

Enter microservices

11

Enter microservices

12

Network of microservices

13

Microservices with their data

14

Multiple points of entry

15

Teams & pipelines

16

Mindblown

17

We need new ideas

18

“We cannot solve our
problems with the same
thinking we used when

we created them”
⸺ Albert Einstein

(Theoretical Physicist)

New ideas!

New ideas

20

● 12-factor app
● Microservices
● Command & Query Separation
● Event Sourcing
● Ports and Adapters / Hexagonal architecture
● Eventual consistency
● Ease of testing

Which to choose?!?

21

Road to Awesomeness

Self-Service,
On-Demand,

Elastic
Infrastructure

Automation CI & CD
Deployment

Pipeline

Advanced
Deployment
Techniques

Microservices
Re-Org to
DevOps

Serverless
Computing

Serverless computing

23

What is

?“Serverless computing refers to the concept of
building and running applications that do not require
server management.

It describes a finer-grained deployment model
where applications, bundled as one or more
functions, are uploaded to a platform and then
executed, scaled, and billed in response to the exact
demand needed at the moment.”

⸺ Cloud Native Computing Foundation
https://www.cncf.io/blog/2018/02/14/cncf-takes-first-step-towards-serverless-computing

“Serverless” pattern

Event Your app Output

HTTP calls

Kafka messages

Photo upload

New order

User sign-in

induce produces

25

"Serverless" pattern

Serverless web app

Container

HTTP Request

Containers

HTTP Request

Data store

Browser

Browser

myapp.example.com

26

"Serverless" pattern

Kafka message processing

Container

Containers

Data store

Kafka message

Kafka message

External system

External system

27

Serverless operational gains

27

With Serverless

Too many resources
Costs of unused resources

Not enough resources
Loss of revenue
Poor quality of services

Usage adaptation
Direct correlation between
costs and business
revenue

without Serverless with Serverless

Event Mesh

Event Mesh

29

What is

?“An event mesh is a configurable and dynamic
infrastructure layer for distributing events among
decoupled applications, cloud services and
devices.

It enables event communications to be governed,
flexible, reliable and fast. An event mesh is created
and enabled through a network of interconnected
event brokers.”

⸺ Solace
https://solace.com/what-is-an-event-mesh

Service Mesh vs Event Mesh

30

Service Mesh Event Mesh

Similarities
● Flexibility
● Robustness
● Decoupling

Differences

● Synchronous
● Request and response
● Better for queries

● Asynchronous
● Event
● Better for commands

Eventual consistency = Event Mesh + CQRS

31

based on Knative
OpenShift Serverless

is a Kubernetes extension
that allows you to deploy and
manage modern serverless
apps.

Knative

34

Knative in OpenShift

● Knative is a CNCF Open Source project
● A community driven by multiple stakeholders https://knative.dev

○ Supported by Google, Red Hat, IBM, VMware, TriggerMesh, SAP and more
● OpenShift Serverless: https://www.openshift.com/learn/topics/serverless

● Latest production-ready release: 1.25.0 (Knative 1.4)

https://knative.dev
https://www.openshift.com/learn/topics/serverless

Eventing

Framework for propagation
of events that will stimulate

apps.

Serving
A request-based model that
serves an app container and

can "scale to zero."

35

Knative components

Demo!
Hello World

Serverless Serving

Easy routing, scaling to zero and
to the demand plus automatic
revision tracking

38

● Automatic request-based scaling, including scaling

to zero

● Separation of code from configuration

● An opinionated deployment model tailored to

stateless applications

● Traffic routing capabilities for secure deployment of

new versions

Serving concepts

39

Service

Route Configuration

Revision

Revision

Revision

manages

routes
traffic

records
change
history

10%

90%

● Configuration represents the "floating
HEAD" of the Revision history

● Revision represents an immutable
snapshot of code and configuration

● Route configures ingress using a set of
revisions

● Service (it's not K8s service!) is the public
entity that we will operate, a facade for
the user

Serving resources

40

apiVersion: apps/v1
kind: Deployment
metadata:
 name: random
spec:
 replicas: 1
 selector:
 matchLabels:
 app: random
 template:
 metadata:
 labels:
 app: random
 spec:
 containers:
 - image: rhsummit2020/random:1.0
 name: random
 ports:
 - containerPort: 8080

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: random
spec:
 replicas: 1
 selector:
 matchLabels:
 app: random
 template:
 metadata:
 labels:
 app: random
 spec:
 containers:
 - image: rhsummit2020/random:1.0
 name: random
 ports:
 - containerPort: 8080

Routing and autoscaling
out-of-the-box

… and K8s Service,
Route, Autoscaler

Migrating to Knative

Developer UX

kn service
kn service create
kn service delete
kn service describe
kn service list
kn service update

Configuration

Revision 1

Revision 2

Revision 3

Application
 (Knative Service)

RoutesDirects
traffic

Traffic splitting

kn revision
kn revision delete
kn revision describe
kn revision list

kn route
kn route describe
kn route list

● From image address to container in seconds

● Simpler development experience for K8s

● Built-in versioning, traffic splitting and more

● Simplified lightweight installation with Kourier

● Automatic TLS/SSL

41

https://github.com/knative/client/blob/master/docs/cmd/kn_revision_delete.md
https://github.com/knative/client/blob/master/docs/cmd/kn_revision_describe.md
https://github.com/knative/client/blob/master/docs/cmd/kn_revision_list.md
https://github.com/knative/client/blob/master/docs/cmd/kn_revision_describe.md
https://github.com/knative/client/blob/master/docs/cmd/kn_revision_list.md

Demo!
Autoscaling

Serverless Eventing

An universal Event Mesh based
sources, brokers, channels and sinks
for CNCF Cloud Events

Serverless Eventing
● Based on CNCF CloudEvents (regular HTTP)

● Exchangeable transport: Channels and Brokers

○ In-Memory (dev only)
○ Apache Kafka
○ Google Pub-Sub, …

● Flexible event routing from Sources to Sinks

○ Source: adapter that integrates external systems and emits
CloudEvents

○ Sink: addressable (HTTP) endpoint receiving CloudEvents
(can be Kn Service or K8s Service)

44

45

Sources
Built-in sources

PingSource Periodically emits a static CloudEvent

ApiServerSource Reports K8s API Server events as CloudEvent

SinkBinding Connects a pod to Event Mesh

Other sources

GitHubSource Converts GitHub webhooks to CloudEvents

KafkaSource Kafka messages as CloudEvents

CamelKSource KApache Camel components as CE sources

and many more: https://knative.dev/docs/eventing/sources/

https://knative.dev/docs/eventing/sources/

Source → Sink : Directly

● The easiest way to send CloudEvent to a service

● Disadvantages:

○ No queuing support if the service is unavailable
○ No back-pressure mechanism
○ Only one service can consume events
○ No filtering, Sink will always get all events

Source Sink
(Knative Service)

sink:

46

Source → Sink : Broker and Trigger

Broker

● Build-in queue
● Back pressure
● Persistence (some implementations)

Broker

Source

Source

Sink

Sink
Trigger
filter =

Trigger
filter =

Trigger

● Filters events by their attributes from
CloudEvents (i.e. type)

● Connects Broker to the Sink47

Demo!
Event Mesh

Applications using Knative along with
Tekton are a natural for Kubernetes.

We could cover all our ideas, while
avoiding vendor lock-in!

Kubernetes-native apps

● 12-factor app : Knative, Tekton, OpenTelemetry

● Microservices, Functions : Knative Serving

● Command & Query Separation : Serving for queries,

Eventing for commands

● Event Sourcing : Persistent Event Mesh

● Ports and Adapters / Hexagonal architecture :
code nicely, please

● Eventual consistency : reconcile loop like Kubernetes

operators

● Ease of testing : HTTP calls only

Kubernetes-native apps

51

Knative Resources

● bit.ly/knative-tutorial

● developers.redhat.com/coderland/serverless

● github.com/cardil/knative-serving-showcase

● bit.ly/kubernetes-tutorial

● bit.ly/quarkus-tutorial

● developers.redhat.com

http://bit.ly/knative-tutorial
https://developers.redhat.com/coderland/serverless
https://github.com/cardil/knative-kafka-demo
http://bit.ly/kubernetes-tutorial
http://bit.ly/quarkus-tutorial
https://developers.redhat.com

http://linkedin.com/company/Red-Hat

http://youtube.com/user/RedHatVideos

http://facebook.com/RedHatinc

https://twitter.com/RedHat

Chris Suszyński

 @ksuszynski /in/krzysztof-suszynski

http://linkedin.com/company/Red-Hat
http://youtube.com/user/RedHatVideos
http://facebook.com/RedHatinc
https://twitter.com/RedHat
https://twitter.com/ksuszynski
https://www.linkedin.com/in/krzysztof-suszynski

